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1 Introduction

The purpose of this note is to compare the distributions of the minimums of two sets of random vari-

ables, respectively with geometric and exponential distributions, having pairwise matching means.

The geometric distribution is the discrete analog of the exponential distribution and can be applied

to a variety of performance models which can be analyzed by analytic or simulation methods. The

following notation is used:

� IN = f0; 1; 2; . . .g, the natural numbers.

� IN+ = f1; 2; 3; . . .g, the positive natural numbers.

� N = f1; 2; . . . ; ng, the �rst n natural numbers (n is a constant which will be clear from the

context).

� FA(t) = PrfA � ag, the cumulative distribution function (CDF) of a random variable A.

� FA(t) = 1� FA(t), the complement of the CDF of A (its survivor function).

2 Geometric, modi�ed geometric, and exponential distributions

Two random variables X and Z are said to have a geometric distribution with parameter � 2 (0; 1),

X � Geom(�), and a modi�ed geometric distribution with parameter � 2 (0; 1),Z � ModGeom(�),

[4] if their probability mass functions (pmfs) are, respectively,

8k 2 IN+;PrfX = kg = �(1� �)k�1 and

8k 2 IN;PrfZ = kg = �(1� �)k;

from which it follows that their CDFs at the mass values are

8k 2 IN+;PrfX � kg =
kX
l=1

�(1� �)l�1 = 1� (1� �)k and

8k 2 IN;PrfZ � kg =
kX
l=0

�(1� �)l = 1� (1� �)k+1;

and that their expectations are

E[X ] =
1X
k=1

k�(1� �)k�1 =
1

�
and

E[Z] =
1X
k=0

k�(1� �)k =
1� �

�
:

Informally, the di�erence between a geometric and a modi�ed geometric distribution with the

same parameter is the way in which they count: the geometric distribution starts at one, the

modi�ed geometric distribution starts at zero. Hence, if X � Geom(�), X � 1 � ModGeom(�).

Equivalently, the geometric distribution models the trial number of the �rst \success" in repeated
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independent Bernoulli trials, whereas the modi�ed geometric distribution models the number of

trials before the �rst success.

The above assumes that the \time-step" of the distribution is the same as the units in which

time is measured. This restriction is removed by considering X and Z as random variables assuming

values in fk! : k 2 IN+
g or fk! : k 2 INg, respectively, for some time-step ! > 0:

X � Geom(�; !) () 8t 2 IR;PrfX � tg =

8<
: 1� (1� �)b

t

!
c if t � 0

0 otherwise
and

Z � ModGeom(�; !)() 8t 2 IR;PrfZ � tg =

8<
: 1� (1� �)b

t

!
c+1 if t � 0

0 otherwise
;

which imply

8k 2 IN+;PrfX = k!g = �(1� �)k�1 and

8k 2 IN;PrfZ = k!g = �(1� �)k

and

E[X ] =
!

�
and

E[Z] =
!(1� �)

�
:

It is well known that both the geometric and modi�ed geometric distributions are discrete

analogs of the exponential distribution. In particular, given an exponential random variable Y

with rate � > 0,

Y � Expo(�) () 8t � 0;PrfY � tg = 1� e��t)E[Y ] = ��1;

one can determine � and � so that X and Z match Y in expectation:

E[X ] =
!

�
= ��1 = E[Y ] ) � = �! and

E[Z] =
!(1� �)

�
= ��1 = E[Y ] ) � =

�!

1 + �!
;

and then, using these values for � and �, the distributions of X and Z approximate that of Y

arbitrarily well as the time-step ! is reduced:

lim
!#0

PrfX � tg = lim
!#0

1� (1� �!)b
t

!
c = 1� e��t = PrfY � tg and

lim
!#0

PrfZ � tg = lim
!#0

1�

�
1�

�!

1 + �!

�b t
!
c+1

= 1� e��t = PrfY � tg;

Note that � = �! 2 (0; 1) implies ! < ��1, that is, it is not possible to match the mean of an

exponential random variable Y � Expo(�) with a geometric random variable having a time-step

! > ��1. In the special case ! = ��1, � = 1 and the distribution of X degenerates to a constant:

X � Geom(1; !) � Const(!). In the following, we allow this case and require ! 2 (0; ��1]. No

such restriction exists in the case of the modi�ed geometric distribution, where any ! > 0 can be

used.
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3 The minimum of a set of random variables

Consider now three sets of n � 2 independent random variables, fXi : i 2 Ng, fZi : i 2 Ng, and

fYi : i 2 Ng with matching means:

8i 2 N;Xi � Geom(�i; !); E[Xi] = ��1
i ) �i = �i!;

8i 2 N;Zi �ModGeom(�i; !); E[Zi] = ��1
i ) �i =

�i!

1 + �i!
; and

8i 2 N; Yi � Expo(�i); E[Yi] = ��1
i :

Since ! 2
T
i2N(0; �

�1
i ], we obtain ! 2 (0; ��1

MAX ], where �MAX = maxf�i : i 2 Ng.

It is well known that the minimum of each of these sets has the same type of distribution as

the elements of the set [5, 2]:

X(1) = minfXi : i 2 Ng � Geom

 
1�

Y
i2N

(1� �i); !

!
;

Z(1) = minfZi : i 2 Ng � ModGeom

 
1�

Y
i2N

(1� �i); !

!
; and

Y(1) = minfYi : i 2 Ng � Expo

 X
i2N

�i

!
:

Hence, X(1), Z(1), and Y(1) have di�erent expectations:

E[X(1)] =
!

1�
Y
i2N

(1� �i)
=

!

1�
Y
i2N

(1� �i!)
6=

 X
i2N

�i

!
�1

= E[Y(1)] and (1)

E[Z(1)] =

!
Y
i2N

(1� �i)

1�
Y
i2N

(1� �i)
=

!

�1 +
Y
i2N

(1 + �i!)
6=

 X
i2N

�i

!
�1

= E[Y(1)]: (2)

Theorem 1. For n � 2, E[X(1)] > E[Y(1)] > E[Z(1)].

Proof. We prove that E[X(1)] > E[Y(1)] by induction on n, hence we make the index n explicit

by writing E[X(1;n)] and E[Y(1;n)].

Base step: For n = 2,

E[X(1;2)] =
!

1� (1� �1!)(1� �2!)
=

1

�1 + �2 � �1�2!
>

1

�1 + �2
= E[Y(1;2)]:

Inductive Hypothesis: Assume that, for a given n, E[X(1;n)] > E[Y(1;n)]. Then,

!

1�
Y
i2N

(1� �i!)
>

 X
i2N

�i

!�1

)

Y
i2N

(1� �i!) > 1�
X
i2N

�i!
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Figure 1: E[X(1)], E[Y(1)], and E[Z(1)] (n = 1; � � � ; 5, 8i; �i = 1) as a function of !.

Inductive Step: Then E[X(1;n+1)] > E[Y(1n+1)], since

E[X(1;n+1)] =
!

1�

 Y
i2N

(1� �i!)

!
(1� �n+1!)

>
!

1�

 
1�

X
i2N

�i!

!
(1� �n+1!)

=
1X

i2N

�i + �n+1 �

 X
i2N

�i

!
�n+1!

>

0
@ X
i2N[fn+1g

�i

1
A
�1

= E[Y(1;n+1)]

The proof that E[Z(1)] < E[Y(1)] is analogous and is omitted. QED.

In other words, the minimum of n independent exponential random variables is always strictly

bounded in expectation by the minimums of n independent geometric and modi�ed geometric

random variables with matching means. For example, if n = 2, and �1 = �2 = �,

E[X(1)] = (2�(1� �!=2))�1 > E[Y(1)] = (2�)�1 > E[Z(1)] = (2�(1 + �!=2))�1 :

E[X(1)] and E[Z(1)] coincide with E[Y(1)] only in the limit, as ! # 0 (see �gure 1):

lim
!#0

E[X(1)] = lim
!#0

!

1�
Y
i2N

(1� �i!)
= lim

!#0

!X
i2N

�i! + o(!)
=

 X
i2N

�i

!�1

= E[Y(1)] and

lim
!#0

E[Z(1)] = lim
!#0

!

�1 +
Y
i2N

(1 + �i!)
= lim

!#0

!X
i2N

�i! + o(!)
=

 X
i2N

�i

!
�1

= E[Y(1)]:

The convergence of E[X(1)] and E[Z(1)] to E[Y(1)] as ! # 0 can also be derived observing that

E[X(1)]� ! < E[Z(1)] < E[Y(1)] < E[X(1)] < E[Z(1)] + !;

which follows from the fact that (Xi � !) � ModGeom(�i; !) and (Zi + !) � Geom(�i; !), and

from 8i 2 N;�i < �i, which imply that E[X(1)� !] < E[Z(1)] and E[Z(1)+ !] > E[X(1)].

The next section contains an explanation for these inequalities.
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4 Stochastic variability

Random variables with the same mean can be compared using the notion of stochastic variability,

described in Ross [3], for which there are two equivalent de�nitions. Y is said to be stochastically

more variable than X , X �v Y , if

8 increasing convex function g; E[g(X)]� E[g(Y )]

or, equivalently, if

8a � 0;

Z
1

a

FX(t) dt �

Z
1

a

FY (t) dt:

An additional useful notion codi�es the idea that the remaining lifetime of a random variable

conditioned on exceeding some value a has never greater expectation (NBUE: New Better Than

Used in Expectation), or never smaller expectation (NWUE: New Worse Than Used in Expecta-

tion), than the original lifetime. Formally, a nonnegative random variable A is NBUE if

8a � 0; E[A� a j A > a] � E[A]

and is NWUE if

8a � 0; E[A� a j A > a] � E[A]:

Ross lists some important consequences of these de�nitions:

� If X and Y are nonnegative, X �v Y , and E[X ] = E[Y ], then �X �v �Y .

� If g : IRn
! IR is an increasing convex function, if 8i 2 N;Xi �v Yi, fXi : i 2 Ng are

independent, and fYi : i 2 Ng are independent, then

g(X1; X2; . . . ; Xn) �v g(Y1; Y2; . . . ; Yn):

� If X is NBUE, and Y is exponential with the same mean as X , then X �v Y .

� If Z if NWUE and Y is exponential with the same mean as Z then Y �v Z.

These last two facts are used to relateX � Geom(�; !), Z � ModGeom(�; !), and Y � Expo(�)

with the same mean, by showing that the geometric distribution is NBUE and that the modi�ed

geometric distribution is NWUE. Let X � Geom(�; !), Z � ModGeom(�; !), and choose any

a � 0. Using the memoryless property of the geometric distribution, we can derive:

E[X � a j X > a] = E[X j X > a]� a =

�
a

!

�
! +E[X ]� a � E[X ] and

E[Z � a j Z > a] = E[Z j Z > a]� a =

��
a

!

�
+ 1

�
! + E[Z]� a > E[Z]:

Therefore, X �v Y �v Z.

Considering again the three sets of independent random variables with matching means fXi :

i 2 Ng, fZi : i 2 Ng, and fYi : i 2 Ng observe that

minfai : i 2 Ng = �maxf�ai : i 2 Ng:
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Since max is an increasing convex function and 8i 2 N;�Xi �v �Yi �v �Zi,

maxf�Xi : i 2 Ng �v maxf�Yi : i 2 Ng �v maxf�Zi : i 2 Ng;

implying that

�E[maxf�Xi : i 2 Ng] � �E[maxf�Yi : i 2 Ng] � �E[maxf�Zi : i 2 Ng];

and thus that

E[minfXi : i 2 Ng] = E[X(1)] � E[minfYi : i 2 Ng] = E[Y(1)] � E[minfZi : i 2 Ng] = E[Z(1)]:

5 Matching the minimums by changing the time-step

This section presents an explanation for the existence of the strict Inequality (1), and its quanti�-

cation, based on the possibility of a tie for the minimum in the set fXi : i 2 Ng. A con�rmation

of this intuition is found by de�ning a new random variable, W(1), obtained dividing X(1) by the

expected number of random variables tied for the minimum: the expectation of this \weighted

minimum" W(1) is indeed the same as that of Y(1).

The discrete nature of the geometric distribution implies that several random variables in

fXi : i 2 Ng might coincide with X(1). De�ne I[1] to be the the set of indices among f1; . . .ng

corresponding to such random variables (I[1] is itself random):

I[1] = fi 2 N : Xi = X(1)g � N; I[1] 6= ;:

The pmf of I[1] is

8s � N; s 6= ;;PrfI[1] = sg = Prf8i 2 s;Xi = X(1) ^ 8j 2 N n s;Xj > X(1)g

=
1X
k=1

Prf8i 2 s;Xi = k! ^ 8j 2 N n s;Xj > k!g

=
1X
k=1

 Y
i2s

�i(1� �i)
k�1

!0
@ Y
j2Nns

(1� �j)
k

1
A

=
1X
k=1

 Y
i2s

�i

!0
@ Y
j2Nns

(1� �j)

1
A
0
@Y
l2N

(1� �l)
k�1

1
A

=

 Y
i2s

�i

!0
@ Y
j2Nns

(1� �j)

1
A

1�
Y
l2N

(1� �l)
:

This result is more easily obtained observing that, because of the absence of memory of the geo-

metric distribution, I[1] and X(1) are independent, hence PrfI[1] = sg is simply the product of the

one-step probability of success for the elements of s and of the one-step probability of failure for

the elements not in s, normalized by the probability that at least one success occurs.
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For example, if n = 2, the three possible values for I[1] and their probabilities are:

PrfI[1] = f1gg = PrfX1 < X2g =
�1(1� �2)

1� (1� �1)(1� �2)
=

�1 � �1�2!

�1 + �2 � �1�2!

PrfI[1] = f2gg = PrfX1 < X2g =
�2(1� �1)

1� (1� �1)(1� �2)
=

�2 � �1�2!

�1 + �2 � �1�2!

PrfI[1] = f1; 2gg = PrfX1 = X2g =
�1�2

1� (1� �1)(1� �2)
=

�1�2!

�1 + �2 � �1�2!

In general, the probability that a particular Xi is equal X(1), or that i 2 I[1], is

PrfXi = X(1)g =
1X
k=1

PrfXi = k! ^ 8j 2 N; j 6= i; Xj � k!g

=
1X
k=1

�i(1� �i)
k�1

Y
j2N;j 6=i

(1� �j)
k�1

=
1X
k=1

�i
Y
j2N

(1� �j)
k�1

=
�i

1�
Y
j2N

(1� �j)
;

hence, the expected number of completions at time X(1) among fXi : i 2 Ng is

E[jI[1]j] =
X
i2N

PrfXi = X(1)g =

X
i2N

�i

1�
Y
j2N

(1� �j)
:

We can de�ne the \weighted" random variables fWi : i 2 Ng, where

8i 2 N;Wi =
Xi

E[jI[1]j]
� Geom

 
�i;

!

E[jI[1]j]

!
� Geom

0
BBB@�i; ! �

1�
Y
j2N

(1� �j)

X
i2N

�i

1
CCCA :

which are still geometrically distributed random variables with the same success probabilities as

their original counterparts fXi : i 2 Ng, but with a reduced time-step. Then,

W(1) = minfWi : i 2 Ng = min

(
Xi

E[jI[1]j]
: i 2 N

)
=

X(1)

E[jI[1]j]

takes into account simultaneous completions by dividing the minimum completion time by the

expected number of completions (the corresponding quantity for the continuous case is still simply

Y(1), since the probability of simultaneous completions is zero in this case). The expected value

of the weighted minimum for the geometric case coincides with the expected minimum for the

exponential case:

E[W(1)] = E

"
X(1)

E[jI[1]j]

#
=

E[X(1)]

E[jI[1]j]
=

!

1�
Y
i2N

(1� �i)

X
i2N

�i

1�
Y
j2N

(1� �j)

=
!X

i2N

�i
=

 X
i2N

�i

!�1

= E[Y(1)]
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We conclude this section by observing that, while the result E[W(1)] = E[Y(1)] seems to imply

that exact ties are the cause of Inequality (1), this is not correct, since the inequality holds even

when ties are not possible. This can be shown by considering a set of geometric random variables

fX�

i : i 2 Ng, where

8i 2 N;X�

i � Geom(��i ; !i); E[X
�] =

!i

��i
= ��1

i = E[Yi]

and, 8i 2 N; 8j 2 N; i 6= j, the ratio !i=!j is not a rational number, hence, it is not possible to

�nd two integers ki and kj that would results in a potential tie at time ki!i = kj!j .

6 Matching the minimums by time-shifting

In the previous section, we forced the expectation of the minimums of fXi : i 2 Ng and fYi :

i 2 Ng to coincide by reducing the time-step of the geometric distributions, that is, transforming

fXi : i 2 Ng into fWi : i 2 Ng. While the result E[W(1)] = E[Y(1)] is appealing, the weighted

random variables fWi : i 2 Ng do not match the original fYi : i 2 Ng in expectation. A more

interesting result would be to modify our initial set of random variables fXi : i 2 Ng so that both

the individual random variables and the minimum match the corresponding exponential quantities

in expectation.

In this section, we accomplish exactly this by introducing the \shifted geometric" distribution,

a generalization of both the geometric and modi�ed geometric distribution. Given 0 < � � 1,

! > 0, and � 2 IR, we say that S has a shifted geometric distribution with parameters �, !, and

�, S � ShiftGeom(�; !; �), if its pmf is

8k 2 IN;PrfS = k! + �g = �(1� �)k

which implies that its CDF is

8t 2 IR; PrfS � tg =

8<
: 1� (1� �)b

t��

!
c+1 if t � �

0 otherwise

and that its expectation is

E[S] =
1� �

�
! + �:

In other words, given a random variable A � ModGeom(�), ! > 0, and � 2 IR, S = A! + � �

ShiftGeom(�; !; �). Figure 2 shows the relationships between the geometric, modi�ed geometric,

shifted geometric, and exponential distributions.

Given Y � Expo(�), we can again consider the condition under which S and Y have the same

expectation:

E[S] =
1� �

�
! + � = ��1 = E[Y ] ) � =

!�

1� ��+ !�
: (3)

Since � is a probability, it can only have values in [0; 1]. Furthermore, E[S] = 1 when � = 0, so

we exclude this case. Then, S and Y have the same expectation for any choice of ! and �, as long

as

0 < � =
!�

1� ��+ !�
� 1 ) � � ��1

and � is set according to Equation (3). A few observations are of particular interest:
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S ~ShiftGeom(α,ω,σ)

Z ~ModGeom(α,ω)

X ~Geom(α,ω)

S’~ShiftGeom(α,σ)

Z’~ModGeom(α)

X’~Geom(α)

Y ~Expo(λ)

S’= Z’+ σ X’= Z’+ 1

S = Z + σ X = Z + ω X = X’ω

Z = Z’ω

S = (S’-σ)ω + σ

Y = limω↓0,α=ω/λ Z
Z = Y/ω

Y = limω↓0,α=ω/λ S − σ
S = Y/ω + σ

Y = limω↓0,α=ω/λ X
X = Y/ω

Figure 2: Relationships between the distributions discussed in this paper.

� Once the value of E[S] is �xed at ��1, decreasing the time-shift � by �, possibly below zero,

causes a decrease in �, so that E[A] increases by �=! and E[S] = E[A]!�� remains constant.

Since E[A] can be arbitrarily large, this explains why there is no lower bound for �.

� If � = 0, S � ModGeom(�; !).

� If ! < ��1 and � = !, S � Geom(�; !).

� If � = ��1, � = 1, hence S � Const(�) � Const(��1).

Consider now a set of modi�ed geometric random variables with time-step one, fAi : i 2 Ng

and the set of shifted geometric random variables fSi : i 2 Ng obtained from them by changing

the time-step to ! and applying a time-shift �:

8i 2 N; Ai � ModGeom(�i); Si = Ai! + � ) Si � ShiftGeom(�i; !; �)

and set the parameters f�i : i 2 Ng so that:

8i 2 N; E[Si] =
1� �i

�i
! + � = ��1

i = E[Yi] ) �i =
!�i

1� ��i + !�i
:

Since 8i 2 N; 0 < �i � 1, the maximum value of � is

� � min
i2N

n
��1
i

o
=

�
max
i2N
f�ig

��1

= ��1
MAX :

The expectation of S(1) = minfSi : i 2 Ng = A(1)! + � is then

E[S(1)] =

Y
i2N

(1� �i)

1�
Y
i2N

(1� �i)
! + �
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=

Y
i2N

�
1�

!�i

1� ��i + !�i

�

1�
Y
i2N

�
1�

!�i

1� ��i + !�i

�! + �

=

Y
i2N

(1� ��i)

Y
i2N

(1� ��i + !�i)�
Y
i2N

(1� ��i)
! + � =

pn

qn � pn
! + �

where

pn =
Y
i2N

(1� ��i) and qn =
Y
i2N

(1� ��i + !�i)

satisfy

� 8� � ��1
MAX ; pn < qn.

� pnj�=0 = 1, qnj�=0 =
Y
i2N

(1 + !�i) > 1.

� pnj�=��1

MAX

= 0.

� If ! < ��1
MAX , qnj�=! = 1.

Theorem 2. There exists a unique value �� � ��1
MAX for which E[S(1)] = E[Y(1)].

Proof. To show the existence of ��, it is su�cient to observe that E[S(1)] is a continuous function

of � over (�1; ��1
MAX ], that

E[S(1)]
���
�=0

=
!Y

i2N

(1 + !�i)� 1
<

 X
i2N

�i

!�1

= E[Y(1)]

(this is Inequality (2)), and that

E[S(1)]
���
�=�

�1

MAX

= ��1
MAX >

 X
i2N

�i

!
�1

= E[Y(1)]:

Hence, by continuity, there must exist a value �� 2 (0; ��1
MAX) satisfying

E[S(1)]
���
�=��

= E[Y(1)]:

Furthermore, if ! < ��1
MAX ,

E[S(1)]
���
�=!

=

Y
i2N

(1� !�i)

1�
Y
i2N

(1� !�i)
! + ! =

!

1�
Y
i2N

(1� !�i)
>

 X
i2N

�i

!
�1

= E[Y(1)]

(this is Inequality (1)), hence, in general, �� 2 (0;minf!; ��1
MAXg).

We prove the uniqueness of �� by induction on n, showing that E[S(1)] is a strictly increasing

function of � over (�1; ��1
MAX ], hence we make the index n explicit in E[S(1)] by writing

E[S(1;n)] = minfSi : i 2 Ng:
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Base step: For n = 2,

E[S(1;2)] =
(1� ��1)(1� ��2)

(1� ��1 + !�1)(1� ��2 + !�2)� (1� ��1)(1� ��2)
! + �

=
1 + ��1�2(! � �)

�1 + �2 + �1�2(! � 2�)

and

dE[S(1;2)]

d�
=

�1�2(!(�1 + �2 � 2�1�2�) + 2(1� ��1 � ��2 + �2�1�2) + !2�1�2)

(�1 + �2 + �1�2(! � 2�))2

=
�1�2(

�0 for ����1

M
AXz }| {

!(�1(1� ��2) + �2(1� ��1) + 2(1� ��1)(1� ��2)+!
2�1�2)

(�1 + �2 + �1�2(! � 2�))2
> 0:

In particular,

lim
�!�1

E[S(1;2)] = �1 and lim
�!�1

dE[S(1;2)]

d�
=

1

2

and

E[S(1;2)]
���
�=��1

MAX

= ��1
MAX and

dE[S(1;2)]

d�

�����
�=��1

MAX

=
!

! + ��1
MIN � ��1

MAX

2

 
!

! + ��1
MIN

; 1

#

where �MIN = minf�1; �2g.

Inductive Hypothesis: Assume that, for a given n,

E[S(1;n)] =
pn

qn � pn
! + �

is a strictly increasing function of � over (�1; ��1
MAX ], that is

dE[S(1;n)]

d�
=

p0n(qn � pn)� pn(q
0
n � p0n

(qn � pn)2
! + 1 =

p0nqn � pnq
0
n

(qn � pn)2
! + 1 > 0

which implies

8� 2 (�1; ��1
MAX ]; !(p

0

nqn � pnq
0

n) > �(qn � pn)
2

Inductive Step: Then the same holds for n+ 1, that is,

E[S(1;n+1)] =
pn+1

qn+1 � pn+1

! + � =
pn(1� ��n+1)

qn(1� ��n+1 + !�n+1)� pn(1� ��n+1)
! + �;

where �n+1 is the rate of the (n+1)-th exponential random variable, is a strictly increasing function

of � over (�1;maxf�MAX ; �n+1g
�1], that is

dE[S(1;n+1)]

d�
=

(1� ��n+1)(1� ��n+1 + !�n+1)

>�(qn�pn)
2 for ����1

MAXz }| {
(p0nqn � pnq

0

n)! ��2n+1!
2qnpn

(qn(1� ��n+1 + !�n+1)� pn(1� ��n+1))2
+ 1

>
(1� ��n+1)(1� ��n+1 + !�n+1)(�(qn � pn)

2)� �2n+1!
2qnpn

(qn(1� ��n+1 + !�n+1)� pn(1� ��n+1))2
+ 1

=
�n+1!(qn � pn)((qn + pn)(1� ��n+1) + �n+1!qn

(qn(1� ��n+1 + !�n+1)� pn(1� ��n+1))2
> 0
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since, � < ��1
n+1 and 8� 2 (�1;maxf�MAX ; �n+1g

�1]; qn > pn. QED.

We might now ask whether this value �� for which E[S(1)] = E[Y(1)] is such that the other order

statistics coincide as well, that is, whether

8i 2 N; i > 1; E[S(i)]j�=�� = E[Y(i)]:

This is indeed true for n = 2, since

E[S(1)] +E[S(2)] = E[S1] + E[S2] = E[Y1] +E[Y2] = E[Y(1)] +E[Y(2)]

implies that, whenever E[S(1)] = E[Y(1)],

E[S(2)] = E[Y(2)]

Unfortunately, this is not true in general for n � 3, as it can be seen considering the homogeneous

case. When 8i 2 N; �i = �,

PrfS(2) > k! + �g = PrfA(2) > kg

= Pr

(
(8i 2 N;Ai > k) _

 _
i2N

(Ai � k ^ 8j 2 N; j 6= i; Aj > k)

!)

= Pr f8i 2 N;Ai > kg+
X
i2N

PrfAi � k ^ 8j 2 N; j 6= i; Aj > kg

= ((1� �)n)k+1 + n(1� (1� �)k+1)((1� �)n�1)k+1

= n(1� �)(n�1)(k+1)
� (n� 1)(1� �)n(k+1)

and

E[A(2)] =
1X
k=0

PrfA(2) > kg

=
1X
k=0

n(1� �)(n�1)(k+1)
� (n� 1)(1� �)n(k+1)

=
n(1� �)n�1

1� (1� �)n�1
�
(n� 1)(1� �)n

1� (1� �)n

Hence, considering S(2) = A(2)! + � and substituting � from (3),

E[S(2)] =

 
n(1� ��)n�1

(1� ��� !�)n�1 � (1� ��)n�1
�

(n� 1)(1� ��)n

(1� ��� !�)n � (1� ��)n

!
! + �;

while, due to the absence of memory of the exponential distribution,

E[Y(2)] = (n�)�1 + ((n� 1)�)�1:

It can be easily veri�ed numerically, for example when n = 3, ! = 1=2, � = 1, that the only real

root of E[S(1)] = E[Y(1)] is � � 0:173927, while the only real root less than ��1 of E[S(2)] = E[Y(2)]

is � � 0:346961.
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7 Variate generation application

The results of Section 3 can be used in variate generation for Monte Carlo simulation. For brevity,

only the geometric distribution is considered. Results for the modi�ed geometric and shifted geo-

metric distributions are similar.

To generate a single Expo(�) random variate Y by inversion [1]

Y  �
1

�
ln(1� U);

where U � Unif(0; 1). The random number 1 � U can be replaced by U for increased speed

although the direction of monotonicity is reversed. If Y � Expo(�) then dY e � Geom(1 � e��)

since PrfdY e = kg = e�(k�1)�(1� e��) for k 2 IN+. Thus to generate a Geom(�) random variate

X requires only a single line of code

X  

�
ln(1� U)

ln(1� �)

�
:

If the time-step is !, then the appropriate modi�cation to generate a Geom(�; !) random variate

is

X  

�
ln(1� U)

ln(1� �)

�
!:

The straightforward approach to generating the minimum Y(1) of n exponential random variables

fYi � Expo(�i) : i 2 Ng is to generate n exponential variates Y1; . . . ; Yn, then determine the

minimum and the associated index (if required). This approach becomes time consuming as n

increases. A much faster approach is to generate the minimum as

Y(1)  �
ln(1� U)X
i2N

�i
;

where the denominator needs to be computed only once. This approach is both synchronized (one

random variate from Unif(0; 1),Ui is needed to generate one random variate for Y(1)i) and monotone

(given two random variates from Unif(0; 1), U1 and U2, U1 < U2)Y(1)1 < Y(1)2). To generate a

variate corresponding to the index J of the minimum value, use the pmf

PrfJ = jg =
�jX

i2N

�i
;

for j 2 N .

There are two cases to be considered when generating the minimum of geometric random vari-

ables. The �rst is when the modeler wants the means of the individual random variables (but not

of their minimums) to match. The second is when the modeler wants the means of the minimums

(but not of the individual random variables) to match. Consider generating the minimum X(1) in

the �rst case, where fXi � Geom(�i; !) : i 2 Ng. First generate the minimum

X(1) 

2
66666

ln(1� U)X
i2N

ln(1� �i)

3
77777
!:
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To generate a random set of indices I[1] corresponding to completion at the minimum value, use

the pmf

PrfI[1] = sg =

 Y
i2s

�i

!0
@ Y
j2Nns

(1� �j)

1
A

1�
Y
l2N

(1� �l)
:

for s � N; s 6= ;.

There are two costs to consider when generating a set of indices corresponding to X(1). The

�rst cost is the set-up cost incurred once at the beginning of a simulation. If all of the 2n�1 subsets

of indices are to be considered, the (0; 1) interval must be partitioned into as many pieces prior to

generating any variates. The second cost, often called the marginal cost to generate a variate, is

incurred each time a random variate is generated. It involves generating a Unif(0; 1) variate and

searching the partition determined at the beginning of the simulation for the appropriate cell. This

cell corresponds to a set of indices for the generated geometric random variable. The above scenario

is worst-case, since time will be saved in both the set-up and marginal steps if, for example, the

modeler is only interested in whether or not a tie occurred.

The generation of W(1), where the expected values of the minimums of the exponential and

geometric random variables coincide, requires only a slight modi�cation to the previous approach.

At the beginning of a simulation, E[jI[1]j] should be calculated. Thus the reduced geometric is

W(1)  
X(1)

E[jI[1]j]
:

where X(1) is generated using the previous technique.

8 Conclusion

We have shown how, if the random variables fXi : i 2 Ng, fYi : i 2 Ng, and fZi : i 2 Ng

model the same set of n concurrent activities using geometric, exponential, or modi�ed geometric

distributions, respectively, with given expectations f��1
i , the expected value of the minimums are

di�erent, E[X(1)] > E[Y(1)] > E[Z(1)]. Stochastic variability is employed to justify the result.

We then consider two di�erent ways to match the expectation of the minimums. First, by

taking into account the possibility of ties in the geometric case, we de�ne the \weighted minimum"

W(1), and obtain E[W(1)] = E[Y(1)], but this operation corresponds to decreasing the time-step

of the individual geometric distributions, hence their expectation. Alternatively, we introduce

the \shifted geometric distribution", which a generalizes both the geometric and the modi�ed

geometric. We can then de�ne a set of shifted geometric random variables fSi : i 2 Ng, which

match in expectation the exponential random variables both individually, E[Si] = ��1
i , and their

minimum, E[S(1)] = E[Y(1)]. Generating variates is straightforward.
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